30 research outputs found

    A formal agent-based personalised mobile system to support emergency response

    Get PDF
    Communication may be seen as a process of sending and accepting information among individuals. It is a vital part of emergency response management, sharing the information of situations, victims, family and friends, rescue organisations and others. The obtained contextual information during a disaster event, however, is often dynamic, partial and may be conflicting with each other. Current communication strategies and solutions for emergency response have limitations - in that they are often designed to support information sharing between organisations and not individuals. As a result, they are often not personalisable. They also cannot make use of opportunistic resources, e.g. people nearby the disaster-struck areas that are ready to help but are not a part of any organisation. However, history has told us such people are often the first responders that provide the most immediate and useful help to the victims. On the other hand, the advanced and rich capabilities of mobile smartphones have become one of the most interesting topics in the field of mobile technologies and applied science. It is especially interesting when it can be expanded to become an effective emergency response tool to discover affected people and connect them with the first responders and their families, friends and communities. At present, research on emergency response is ineffective for handling large-scale disasters where professional rescuers could not reach victims in disaster struck-areas immediately. This is because current approaches are often built to support formal emergency response teams and organizations. Individual emergency response efforts, e.g. searching for missing people (inc. families and friends), are often web-based applications that are also not effective. Other works focus on sensory development that lacks integrated search and rescue approaches. In this thesis, I developed a distributed and personalisable Mobile Kit Disaster Assistant (MKA) system that is underpinned by a formal foundation. It aims at gathering emergency response information held by multiple resources before, during and after a large-scale disaster. As a result, contextual and background information based on a formal framework would be readily available, if a disaster indeed strikes. To this end, my core contribution is to provide a structural formal framework to encapsulate important information that is used to support emergency response at a personal level. Several (conceptual) structures were built to allow an individual to express his/her own individual circumstances, inc. relationships with others and health status that will determine how he/she may communicate with others. The communication framework is consisting of several new components: a rich and holistic Emergency Response Communication Framework, a newly developed Communication and Tracking Ontology (CTO), a newly devised Emergency Response Agent Communication Language (ER-ACL) and a brand-new Emergency Response Agent Communication Protocol (ER-ACP). I have framed the emergency response problem as a multi-agent problem where each smartphone would act as an agent for its user; each user would take on a role depending on requirements and/or the tasks at hand and the above framework is aimed to be used within a peer to peer distributed multiagent system (MAS) to assist emergency response efforts. Based on this formal framework, I have developed a mobile application, the MKA system, to capture important features of EM and to demonstrate the practicalities and value of the proposed formal framework. This system was carefully evaluated by both domain experts and potential users of targeted user groups using both qualitative and quantitative approaches. The overall results are very encouraging. Evaluators appreciated the importance of the tool and believe such tools are vital in saving lives – that is applicable for large-scale disasters as well as for individual life-critical events

    Medical support system (MSS) for ward round using pocket pc / Mohd Khairul Azmi Hassan

    Get PDF
    The usage of computer devices varies throughout the medical field, from the registration desk up to the medical ward. Handheld devices such as Pocket PC are portable and easy to use, thus are suitable tools to be implemented in this area. The objective of the project is to provide an alternative for doctors to use Pocket PCs as oppose to the wireless notebooks that are presently used for ward rounds. The systems and databases are developed based on two platforms; Windows ME on the desktop computer and Windows CE on the Pocket PC. The systems and databases that are developed in the two platforms are then synchronized in the MSS System. An extension of the MSS System is a prototype of an intelligent pharmaceutical prescription system. The system can be used to alert doctors of any incorrect prescription

    Communication and tracking ontology development for civilians earthquake disaster assistance

    Get PDF
    One of the most important components of recovery and speedy response during and immediately after an earthquake disaster is a communication and tracking which possibly capable of discovering affected peoples and connects them with their families, friends, and communities with first responders and/or to support computational systems. With the capabilities of current mobile technologies, we believed that it can be a smart earthquake disaster tools aid to help people in this situation. Ontologies are becoming crucial parts to facilitate an effective communication and coordination across different parties and domains in providing assistance during earthquake disasters, especially where affected locations are remote, affected population is large and centralized coordination is poor. Several existing competing methodologies give guidelines as how ontology may be built, there are no single right ways of building an ontology and no standard of Disaster Relief Ontology exist, although separated related ontologies may be combined to create an initial version. This article discusses the ongoing development of an ontology for a Communication and Tracking System (CTS), based on existing related ontologies, that is aimed to be used by mobile phone applications to support earthquake disaster relief at the real-time

    Communication and Tracking Ontology Development for Civilians Earthquake Disaster Assistance

    Get PDF
    ABSTRACT One of the most important components of recovery and speedy response during and immediately after an earthquake disaster is a communication and tracking which possibly capable of discovering affected peoples and connects them with their families, friends, and communities with first responders and/or to support computational systems. With the capabilities of current mobile technologies, we believed that it can be a smart earthquake disaster tools aid to help people in this situation. Ontologies are becoming crucial parts to facilitate an effective communication and coordination across different parties and domains in providing assistance during earthquake disasters, especially where affected locations are remote, affected population is large and centralized coordination is poor. Several existing competing methodologies give guidelines as how ontology may be built, there are no single right ways of building an ontology and no standard of Disaster Relief Ontology exist, although separated related ontologies may be combined to create an initial version. This article discusses the ongoing development of an ontology for a Communication and Tracking System (CTS), based on existing related ontologies, that is aimed to be used by mobile phone applications to support earthquake disaster relief at the real-time

    The formation of yttrium aluminium monoclinic (Y4Al2O9) by sol-gel synthesis at low heating temperature

    Get PDF
    Y4Al2O9 has been synthesized by means of the citrate-nitrate sol-gel combustion method using yttrium (III) nitrate and aluminium (III) nitrate. DTA/TG analysis, X-ray diffraction (XRD), FT-IR and 27Al magic angle spinning nuclear magnetic resonance (MAS NMR) measurements were used to characterize the phase decomposition, weight loss of the sample, the crystal structure and phase formation of the Y4Al2O9 material. XRD shows the Y4Al2O9 starts to crystallize at low temperature, 700°C, with an average particle size around 49 nm

    Dihidroksistearinska kiselina (DHSA) visokog prinosa temeljena na kinetičkom modelu iz epoksidiranog palmina ulja

    Get PDF
    In recent years, studies related to the epoxidation of fatty acids have garnered much interest due to the rising demand for eco-friendly epoxides derived from vegetable oils. From the epoxidation reaction, there is a side reaction involving epoxide and water. This reaction produces a by-product – dihydroxystearic acid (C18H36O4, DHSA). DHSA is one of the chemical precursors in the production of cosmetic products. Therefore, a kinetic model was developed to determine the optimised epoxidation process and concentration of DHSA, where each of the reactions was identified. The kinetic rate, k parameters obtained were: k11 = 6.6442, k12 = 11.0185, k21 = 0.1026 for epoxidation palm oleic acid, and k41 = 0.0021, k51 = 0.0142 in degradation process. The minimum error of the simulation was 0.0937. In addition, DHSA yield optimisation was done through Taguchi method, and the optimum conditions obtained were H2O2/oleic acid – OA unsaturation molar ratio 1 : 1 (level 2), formic acid – FA/OA unsaturation molar ratio 0.5 : 1 (level 1), temperature 35 °C (level 1), and agitation speed 100 rpm (level 1). A high yield of DHSA can be achieved under these conditions. This work is licensed under a Creative Commons Attribution 4.0 International License.Posljednjih godina studije povezane s epoksidacijom masnih kiselina izazvale su veliko zanimanje zbog sve veće potražnje za ekološki prihvatljivim epoksidima dobivenim iz biljnih ulja. Iz reakcije epoksidacije dolazi do nuspojave koja uključuje epoksid i vodu. Tom reakcijom nastaje nusproizvod – dihidroksistearinska kiselina (C18H36O4, DHSA). DHSA jedan je od kemijskih prekursora u proizvodnji kozmetičkih proizvoda. Stoga je razvijen kinetički model za određivanje optimiranog procesa epoksidacije i koncentracije DHSA, gdje je identificirana svaka od reakcija. Dobiveni parametri kinetičke brzine, k bili su: k11 = 6,6442, k12 = 11,0185, k21 = 0,1026 za epoksidacijsku palmino-oleinsku kiselinu i k41 = 0,0021, k51 = 0,0142 u procesu razgradnje. Minimalna pogreška simulacije bila je 0,0937. Uz to, optimizacija prinosa DHSA provedena je Taguchijevom metodom, a dobiveni optimalni uvjeti su molarni omjer nezasićenja H2O2/oleinske kiseline – OA 1 : 1 (razina 2), molarni omjer nezasićenja mravlje kiseline – FA/OA 0,5 : 1 (razina 1), temperatura 35 °C (razina 1) i brzina miješanja 100 o min–1 (razina 1). Pod tim se uvjetima može postići visok prinos DHSA. Ovo djelo je dano na korištenje pod licencom Creative Commons Imenovanje 4.0 međunarodna

    Optimisation of silicone-based dielectric elastomer transducers by means of block copolymers – synthesis and compounding

    Get PDF
    Emerging artificial muscle technology has developed from metal-based robotics to softtype robotics made from soft matter. Research into artificial muscle technology based on soft matter has been conducted mainly in order to mimic soft and robust human muscle. In this regard, dielectric elastomers have been studied. Their actuation occurs when Maxwell stress exceeds elastic stress in the presence of an electrical field, resulting in contraction in thickness and planar expansion in the area. As well as an actuator, dielectric elastomers can be used as generators and sensors. As a dielectric elastomer, silicones have been used extensively in many applications, due to favourable properties such as thermal stability, non-conductivity, high gas permeability and low toxicity. However, silicones have a low dielectric constant and thereby low energy density. In order to enhance actuation performance, it is the aim of this research to develop silicone elastomers with a high dielectric constant and high electrical breakdown strength, as well as a low Young’s modulus. In this Ph.D. thesis, two methods were developed to enhance silicone properties such as the dielectric constant and electrical breakdown strength. The first method was devised to enhance the dielectric constant of silicone elastomers through the use of a polydimethylsiloxane-polyethyleneglycol (PDMS-PEG) copolymer, in order to obtain an elastomer with high electrical energy. PDMS-PEG copolymers were synthesised and blended in commercial silicone and subsequently cross-linked. The relative permittivity of cross-linked silicone with 5 wt% of PDMS-PEG copolymers increased by nearly 50%, without compromising dielectric loss and mechanical properties, compared to the commercial silicone elastomer. The second investigated method involved enhancing the electrical breakdown strength of silicone by using an aromatic voltage stabiliser. Here, polyphenylmethylsiloxane (PPMS), which contained aromatic voltage stabilisers, was bonded covalently to PDMS through a hydrosilylation reaction obtaining PDMS-PPMS copolymers. The synthesised copolymers were subsequently cross-linked with a vinyl cross-linker. The obtained cross-linked PDMS-PPMS copolymers were inherently soft and robust with increased electrical breakdown strength (21%) compared to the reference elastomer without an aromatic voltage stabiliser. The conducting polymer was developed through the use of a multi-walled carbon nanotube (MWCNT) in a PDMS-PEG matrix as a compliant electrode of dielectric elastomers. The conductive PDMS-PEG copolymer was incorporated with surface-treated MWCNT, in order to obtain highly conductive elastomer. The prepared sample with 4 parts per hundred rubber (phr) MWCNT was soft and the resulting conductivity of the cross-linked PDMS-PEG copolymer with the addition of MWCNT was high, at 10-2 S cm-1, nearly equivalent to a commonly used commercial conducting polymer. In this thesis, the elastomer and electrode system is referred to as a ‘dielectrielastome

    Yttrium aluminum monoclinic (YAM) synthesized by high energy ball milling

    Get PDF
    The structural of the mixture of Y2O3-Al2O3 has been studied using X-ray diffraction and 27Al MAS NMR. The sample was synthesized by high energy ball milling process. The polycrystalline YAM powder was form together with impurity YAP and Y2O3 when heated at 1100oC as confirm by XRD and NMR. Increasing heating temperature up to 1400oC did not seem enough to completely transform Y2O3 and α-Al2O3 into YAM phase as the grain growth occur and increase the diffusion distance in solid state reaction

    DTA/TG, XRD and 27Al MAS NMR of yttrium aluminium garnet, Y3al5o12 by sol-gel synthesis

    Get PDF
    27Al magic angle spinning (MAS) NMR has been used at two fields (8.45 T and 14.1 T) to follow the optimisation of a sol-gel process to produce yttrium aluminium garnet, Y3Al5O12 (YAG), at moderate temperatures. 27Al MAS NMR is shown to be a highly sensitive tool to determine the presence of the impurity phase, yttrium aluminium perovskite, YAlO3. Single phase, polycrystalline YAG has been successfully synthesized, using this modified sol-gel process, at temperatures as low as 800◦C. Chemical shifts, quadrupolar coupling constants and asymmetry parameters are reported for the tetrahedral and octahedral aluminium sites of YAG

    Applications of ontology in the Internet of Things: a systematic analysis

    Get PDF
    Ontology has been increasingly implemented to facilitate the Internet of Things (IoT) activities, such as tracking and information discovery, storage, information exchange, and object addressing. However, a complete understanding of using ontology in the IoT mechanism remains lacking. The main goal of this research is to recognize the use of ontology in the IoT process and investigate the services of ontology in IoT activities. A systematic literature review (SLR) is conducted using predefined protocols to analyze the literature about the usage of ontologies in IoT. The following conclusions are obtained from the SLR. (1) Primary studies (i.e., selected 115 articles) have addressed the need to use ontologies in IoT for industries and the academe, especially to minimize interoperability and integration of IoT devices. (2) About 31.30% of extant literature discussed ontology development concerning the IoT interoperability issue, while IoT privacy and integration issues are partially discussed in the literature. (3) IoT styles of modeling ontologies are diverse, whereas 35.65% of total studies adopted the OWL style. (4) The 32 articles (i.e., 27.83% of the total studies) reused IoT ontologies to handle diverse IoT methodologies. (5) A total of 45 IoT ontologies are well acknowledged, but the IoT community has widely utilized none. An in-depth analysis of different IoT ontologies suggests that the existing ontologies are beneficial in designing new IoT ontology or achieving three main requirements of the IoT field: interoperability, integration, and privacy. This SLR is finalized by identifying numerous validity threats and future directions
    corecore